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Chapter 3

Evolution of Phenology and Demography in the
Pitcher-Plant Mosquito, Wyeomyia smithii

William E. Bradshaw and Christina M. Holzapfel

3.1 Introduction

Life-histories may be separated into groups of traits that covary and function
together, generally relating to growth and development, reproduction, dormancy
and migration (Tauber and Tauber 1981; Tauber et al. 1986; Dingle 1986).
Growth, development and reproduction are generally associated with continuous
life-cycles and contribute directly to demographies. Dormancy and migration
generally disrupt or delay continuous life-cycles. Since a genotype’s age at first
reproduction and generation time have a large impact on its fitness (Cole 1954;
Lewontin 1965; Stearns 1976), developmental or reproductive delays might
initially appear to be maladaptive (but see Murphy 1968; Livdahl 1979; Taylor
1980). Organisms in nature do not, however, live in continuous conditions but
rather in seasonal environments that are punctuated with periods of unfavourable
food, temperature, and/or drought. Dormancy and migration provide “escape in
time and space” (Slobodkin 1961) and are thus crucial to long-term fitness despite
the concomitant life-cycle delays.

In this paper, we are concerned with evolutionary coordination between two
main groups of traits that we define as follows:

Demographic traits are those traits involved with direct development, growth,
survivorship and reproduction.

Phenological traits are those traits involved with migration and dormancy. They
are usually invoked seasonally by specific direct (temperature, moisture, food) or
indirect (photoperiod) cues (Lees 1955; Danilevskii 1965; Beck 1980, Tauber et
al. 1986; Danks 1987).

We envision the distinction between these two types of traits to be fundamental
to insect life-cycle strategies. Demographic and phenological traits constitute the
major determinants of fitness under favourable and unfavourable conditions,
respectively. No insect life-cycle in a seasonal environment can be complete
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Fig. 3.1. Source of populations considered in this paper. Small circles, localities contributing to
phenological traits; large circles, localities contributing to demographic traits.

without tactics to deal with both conditions and without the ability to convert
from one to the other. The value of inducible life-cycle conversions is clear:
normal growth, development and reproduction may proceed according to one
strategy while conditions are favourable, diverting to another strategy when
conditions deteriorate or are likely to do so. Since different kinds of selective
force are acting upon each of these two groups of traits, normal growth,
development and reproduction should be free from constraints imposed by
dormancy and migration, i.e. the two groups of traits should be genetically
uncorrelated and free to evolve independently (Dingle et al. 1977; Hegmann and
Dingle 1982; Dingle 1986; Palmer and Dingle 1986; Lande 1982; Taylor 1986).

Indices of fitness, such as the finite or instantaneous rates of increase, are
assembled from components and subcomponents. Variation in the underlying
components may be either coordinated or compensatory. Coordinated variation
in causal components results in variation of the composite index of fitness.
Compensatory variation results in little or no variation of the composite index but
may reflect adapted trade-offs among the causal components. In this chapter, we
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address two questions concerning evolution of the pitcher-plant mosquito,

Wyeomyia smithii, in eastern North America (Fig. 3.1).

1. Do phenological and demographic traits evolve independently in response to
geographical patterns of climate and density-dependent development?

2. Is geographical variation in fitness composed of correlated or independent
components and subcomponents?

To answer these questions, we shall examine geographical variation in
phenological and demographic traits. These patterns of variation reveal how life-
cycle traits have undergone evolutionary divergence during the geographical
radiation of W. smithii; they do not, however, show whether this divergence has
been facilitated, constrained or unaffected by the underlying genetic correlations.

3.2 Life-Cycle of Wyeomyia smithii

Wyeomyia smithii develops (Fig. 3.2) only in the water-filled leaves of pitcher
plants in eastern North America. The eggs are dropped on to the water by
hovering females and hatch directly without any hatching stimulus. Long days
sustain direct development but short days induce a larval diapause in the fourth
instar at southern latitudes (<36° N) or in the third instar at more northern
latitudes or higher altitudes (Smith and Brust 1971; Evans and Brust 1972;
Bradshaw and Lounibos 1972, 1977). Continuous short days maintain diapause.
Larvae respond to photoperiod throughout the winter and into the spring, even
after prolonged chilling in nature, so that photoperiod is also probably respon-
sible for the termination of diapause (Evans and Brust 1972; Lounibos and
Bradshaw 1975). In the north, diapausing third instars may terminate diapause
and enter a second, stable fourth instar diapause that acts as a buffer against
unpredictable vernal weather (Lounibos and Bradshaw 1975). Females of all
populations obligatorily lay their first batch of eggs without a blood meal
(Bradshaw and Lounibos 1977). Northern females never take blood meals but
continue to produce repeated, small batches of eggs; southern females require a
blood meal for the production of their second and subsequent batches (Bradshaw
and Lounibos 1977; Bradshaw and Holzapfel 1983; Bradshaw 1980; O’Meara and
Lounibos 1981; O’Meara et al. 1981).

Over its range, W. smithii encounters a predictable climatic gradient. In the
south, mild winters are followed by long growing seasons, while further north,
harsher winters are followed by progressively shorter growing seasons. At the
southern end of its range, W. smithii may be able to complete up to five
generations per year at 30°N (Bradshaw and Holzapfel 1983), declining to two or,
rarely, three at 42.5° N (Judd 1959; Istock 1978; Istock et al. 1976), one to two at
45.5° N (Kingsolver 1979), and only one at 49-54° N (Evans 1971). In the south
(30°N), generations overlap and blend into each other continuously; in the north
(=42.5° N) generations are relatively discrete.

Resources for developing larvae consist of prey captured by their host leaf.
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Fig. 3.2. Life-cycle of Wyeomyia smithii.

Although prey rapidly disarticulate in the leaf, the more heavily chitinized head
capsules of victims remain intact and are readily identified as such among the
“gut” contents of leaves. Resources per individual W. smithii are then measured
as larvae per head capsule of prey captured by the host leaf. Along the Gulf of
Mexico at the southern end of their range, pupation success of W. smithii is
limited by larval density (equals W. smithii per head capsule of prey: Bradshaw
and Holzapfel 1986). Overwintering W. smithii begin to eclose as adults 2 weeks
before the first leaves open and the first summer generation saturates available
leaves; leaves remain saturated for the duration of the growing season (Bradshaw
and Holzapfel 1986). Density also determines the age structure of the overwinter-
ing population and, subsequently, its pupation success in the spring. Thus,
southern W. smithii saturate their environment year-round, including the winter,
when even diapause does not provide escape in time or space (Bradshaw and
Holzapfel 1986). Density-dependent constraints to development then decrease
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with increasing latitude or altitude (Istock et al. 1976; Bradshaw and Holzapfel
1986). At 42.5° N, W. smithii enjoy release from density-dependent constraints
during most of the growing season but go through density-dependent bottlenecks
in the spring and fall (Istock et al. 1976). The effect of density on vernal
development continues to decrease with increasing latitude and, at some
northern and high-elevation localities, there is no significant effect of density
even on vernal development (Bradshaw and Holzapfel 1986). Wyeomia smithii
therefore encounter a geographical gradient of density-dependent selection that
can be visualized most easily by the crowding of W. smithii per head capsule of
prey over its entire range from the Gulf of Mexico (30° N) to north-central
Canada (Manitoba, 54° N) (Fig. 3.3).
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Fig. 3.3. Resource availability to the average larva over the range of W. smithii. The regression was
run on the latitudinal gradient (@); the mean of three censuses at 900 m at 35° N (O) intercepts the
regression line at 43° N. Resource availability is measured as mean crowding of W. smithii per head
capsule (Ws/hc) of prey in the overwintering generation when 100% of the population is present as
larvae in the leaves. (From Bradshaw and Holzapfel 1986.)
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3.3 Life-Cycle Traits and Geography

On the basis of present-day distribution, physiology, morphology and behaviour,
we conclude that the evolution of W. smithii has proceeded from south to north.

1. Present day distribution: the genus has over 50 tropical and subtropical species
(Stone et al. 1959) and one temperate species, W. smithii, that extends further
north than any other species in the genus or even the whole tribe (Sabethini).

2. Diapause: southern populations diapause only in the fourth instar; northern
populations diapause as third instars but may enter a second, stable, fourth-
instar diapause in the spring (Lounibos and Bradshaw 1975).

3. Anal papillae: southern populations possess four long anal papillae as in most
mosquitoes; northern populations have but two short anal papillae (Bradshaw
and Lounibos 1977).

4. Blood feeding: southern populations require a blood meal for the second and
subsequent ovarian cycles; northern populations mature repeated egg batches
without blood meals (highly unusual among mosquitoes) and are not known to
bite under any circumstances (Bradshaw 1983, 1986a; O’Meara et al. 1981;
O’Meara and Lounibos 1981).

Life-cycle traits of W. smithii should then reflect its evolution along the
geographical gradient of climate and density-dependent development.

3.3.1 Predictions

Phenological traits, including critical photoperiod, stage of diapause and depth of
diapause should respond to the regular geographical change in growing season
and seasonal harshness, showing greater conservatism in the north than in the
south. Demographic traits, including capacity for increase, its components and
their subcomponents should respond to the regular geographical change in
density (Fig. 3.3) as well as climate. Theories of r- and K-selection or of stage-
specific mortality both predict that northern populations should exhibit lower
density-tolerance and higher productivity than southern populations (Stearns
1976; Mueller and Ayala 1981; Mueller 1988). These predictions are reinforced
both by the decrease in seasonal harshness (Roughgarden 1971) and by the
increase in the growing season (King and Anderson 1971) with the concomitant
increase in resource tracking (Bradshaw and Holzapfel 1983) at southern relative
to northern latitudes.

3.3.2 Observed Phenological Traits
Critical Photoperiod
The critical or median photoperiod is the switch-point between long- and short-

day responses, i.e. the number of hours of light per day that initiates or maintains
50% diapause in a population. In W. smithii, the critical photoperiod is tightly
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correlated with latitude and altitude of origin (Fig. 3.4). Photoperiodic response
of W. smithii thus tracks the climatic gradient of eastern North America very
closely (Bradshaw 1976; Bradshaw and Lounibos 1977).

To determine the genetic basis of critical photoperiod, we subjected labora-
tory-reared diapausing larvae from Florida (30° N) and Maine (46° N) to naturally
increasing photoperiods. We used astronomic time switches (street-lamp timers)
that program a sine-function change in photophase over a 365-day period. In our
experiments, we used the near-linear increase in photophase (2-3 min increment
per day) that occurs in the vicinity of the vernal equinox. At each cumulative 15
min increment in photoperiod, we removed all pupae and allowed the adults from
each specific, cumulative 15 min increment to mass swarm in an isolated cage. We
reared the resulting F; progeny on short days, induced diapause, and then
subjected them to the same naturally increasing photoperiod as their parents had
experienced. From the offspring—parent regression of median (critical) photo-
period (Fig. 3.5, left), we concluded that a substantial amount of genetic variation
underlies photoperiodic response within populations of W. smithii. However,
because of the experimental setup, differences in photoperiod of pupation also
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the right-hand figures, diapausing parents (P,) were exposed to naturally increasing photoperiods that
incremented 2-3 min per day and their diapausing offspring (F;) were exposed to static long days.
Slopes +95% confidence limits are shown in the upper left of each graph.

reflect differences in time to develop from the onset of experimental conditions.
The offspring—parent regression of days to pupation (Fig. 3.5, middle) indicates a
heritability similar to that of critical photoperiod. To see whether differences in
response to the astronomic clock may have reflected variation in post-diapause
development time rather than in photoperiodic response, we exposed samples of
F, larvae to static, unambiguous long days (Fig. 3.5, right). In this case, we found
no correlation between parental and offspring development times. Thus the
correlation between offspring and parent development time (Fig. 3.5, middle)
reflects the underlying correlation between their critical photoperiods (Fig. 3.5,
left) and not inadvertent selection for post-diapause development time. Conse-
quently, within populations of W. smithii, variation in photoperiodic response has
a large heritable component. Analysis of covariance revealed heterogeneity of
slopes for critical photoperiod (Fig. 3.5, left; F; 36 = 12.04, P<0.01), indicating
that genetic variation for critical photoperiod is significantly higher in the
northern than in the southern population. We therefore conclude that heritable
variation for photoperiod response has not been diminished by long-term
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directional selection for increasing critical photoperiod during the northward
adaptive radiation of W. smithii.

Depth of Diapause

The depth or intensity of diapause can be measured by the number of long days
required to terminate that diapause. This number is determined by exposing
diapausing larvae to various numbers of long days (0, 1, 2 . . . n) and then
returning them to short days. Depth of diapause is then measured as T, the
number of pulsed long days required to terminate diapause in 50% of the
population. Depth of diapause in W. smithii generally increases with latitude
(Fig. 3.6). but, superficially, appears irregular. At the southern edge of its range,
W. smithii enters a shallow, fourth-instar diapause and the depth of this diapause
increases with latitude. In northern populations, however, diapause occurs in the
third instar. Within third-instar diapausing populations, diapause is again shallow
among the southernmost populations and increases with latitude or altitude. The
shift from a deep to a shallow diapause at 35-40° N is accompanied by a
concomitant shift from a fourth- to a third-instar diapause. At the same time, the
ability to enter a second, fourth-instar diapause is preserved among northern
populations (Lounibos and Bradshaw 1975; Bradshaw and Lounibos 1977). This
pattern, then, reflects a continuum of progressive conservatism: at each
increment in latitude or altitude, irrevocable commitment to adult emergence
becomes increasingly remote. As with critical photoperiod, depth of diapause
tracks the climatic gradient of North America very closely.

3.3.3 Observed Demographic Traits

To assess the effects of climate and density-dependent selection on demographic
traits, we collected populations of W. smithii from 12 localities (Fig. 3.1)
representing six geographical zones along a latitudinal and altitudinal gradient.
After rearing these populations for at least two laboratory generations to
eliminate field effects, we reared them at varying densities under controlled but
near natural conditions of light, temperature and feeding schedule in the leaves of
intact pitcher plants (Bradshaw 1986a). For each locality and density (10, 20, 40
or 60 per leaf) at a constant food level (200 Drosophila melanogaster), we
determined Laughlin’s (1965) capacity for increase:

re = In (replacement rate)/(mean generation time)
=In R,/T
where the components of . are:
R, =3E,/n,

[eclosion success] [sex ratio] [fecundity]
[% eclosion] [% females eclosing] [eggs/eclosed female]

Z(xE,)/ZE,
[development time] + [maturation time]

[days to median eclosion] + [days from median eclosion to median
egg]
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2E, = number of eggs oviposited by a uniform aged cohort at time x, the
number of days since oviposition of the cohort
n, = initial cohort size

We then performed 2-way analysis of variance (ANOVA) on each demographic
trait with treatments geographical zone of origin (n=6) and density in the
laboratory (n=4). Each cell in the ANOVA included two replicates (=indepen-
dent localities) so that we could test for zone xdensity interaction.

Zone Effects

Neither r, nor its components, R, and T, differed among zones (Fig. 3.7). All
three traits responded dramatically to density in the laboratory but there was no
significant zoneXdensity interaction. Thus, r., R,, and T did reflect proximal
effects of density but not longer-term evolution along a geographical gradient of
climate and density-dependent selection. As we have already pointed out
(Bradshaw and Holzapfel 1989) and will not belabour here, the theory of r- and
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Fig. 3.7. Effect of density in the laboratory and geographical zone of origin on mean (+2 SE) capacity
for increase (r.), its components replacement rate (In R,) and mean generation time (T), and its
subcomponents sex ratio (% female, arcsine transformed), development time (D7), and maturation
time (MT). Within each graph is given reduction in total sum of squares ascribable to zone of origin
(Z), density in the laboratory (D), and their interaction (X) from 2-way ANOVA. *P<0.05;
**P<0.01; ***P<0.001; otherwise, not significant. Horizontal lines at the top of each graph extend
over means that are not significantly different (P>0.05) from Duncan’s multiple range test. (r., R, and
T from Bradshaw and Holzapfel 1989; ©) 1989 by The University of Chicago. 0003-0147/89/3306-0007
$02.00. All rights reserved)
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K-selection fails completely to predict the pattern of demographic traits in W.
smithii.

Among the subcomponents of fitness (Fig. 3.7), sex ratio, development time
and maturation time did not vary among zones or reflect significant zone X density
interaction. Fecundity (Fig. 3.8) varied significantly among zones of origin and
among densities in the laboratory but did not exhibit any zoneXdensity
interaction. Duncan’s multiple range test revealed that fecundity declined
steadily with increasing density (Fig. 3.8) but failed to identify a significant
difference between any two zones (Fig. 3.8). Inspection of mean fecundities
revealed no consistent geographical pattern: far southern populations did not
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Fig. 3.8. Effect on (top) eclosion success (mean arcsine transformed percentage eclosion +2SE) and
(bottom) fecundity (mean In (eggs per ecdysed female) +2 s.g.M.) of density in the laboratory (left)
and zone of origin plotted as mean latitude of the two contributing localities (right). In both the top
and bottom plots, the open circle denotes the high elevation zone (900 m at 35° N). Z, D and X as in
Fig. 3.7. Means accompanied by the same letter or lying underneath the same horizontal line are not
significantly different by Duncan’s multiple range test (P>0.05). (Fecundity data from Bradshaw
1986a.)

ey W s Bt

J:
5

rI‘I.

s

31
B

-l:j
2
&

Phenology a

differ fro:
occurred i
reflected |
along a ge
Eclosio
with densi
10 larvae
densities.
aegypti (V
smithii, at
and there
at a densi
lowest de:
decrease
locality o
latitude (e
but these
Further, t
density of
except on
density: r=
the proxin
evolution
Phenot
vastly exc
Decreasec
reason for
generatior
severe lev
while repl
that mode
pre-adult (
pupal size
prolongati
net fecunc
trade-offs
specific tr:
The low
homeostat
density. S
evolving i1
S0 as to av
On the ot
phenotype
tude and t
the case of
meal capa:
of larval d
developmi
resources.



Co-ordination

raits in W.

yment time
1e X density
origin and
1e X density
y declined
significant
fecundities
ns did not

50

S0

a =2SE) and
oratory (left)
both the top
Jand X asin
1line are not
m Bradshaw

e TR T
~—

by

Lo e et

Phenology and Demography in W. smithii 59

differ from far northern populations and the lowest and highest fecundities
occurred in adjacent zones. Thus, fecundity, like the other traits described above,
reflected primarily the proximal effects of density and not longer term evolution
along a geographical gradient of climate and density-dependent selection.

Eclosion success (Fig. 3.8) reflected density, geography, and their interaction,
with density being the more important component. Eclosion success was lower at
10 larvae per leaf, peaked at 20 larvae per leaf, and then declined at higher
densities. A similar Allee effect was observed in laboratory populations of Aedes
aegypti (Wada, 1965) and A. sierrensis (Hard et al. 1989). In the case of W.
smithii, at a density of 10/leaf, development time is significantly faster (Fig. 3.7)
and there is a non-significant tendency towards greater fecundity (Fig. 3.8) than
at a density of 20/leaf so that R, and, consequently, 7. do not decrease at the
lowest density (Fig. 3.7). Eclosion success among zones (Fig. 3.8) appeared to
decrease with latitude. Neither zone mean (r=-0.71; d.f.=3; P>0.05) nor
locality mean (r=-0.61; d.f.=8; P>0.05) was significantly correlated with
latitude (excluding the high elevation zone or high elevation localities at 35° N)
but these correlations might have been significant with a larger sample size.
Further, there was no significant correlation between mean eclosion success and
density of W. smithii per unit resource at the locality of origin (for all localities
except one Gulf Coast population for which we do not have an estimate of field
density: r=0.31; n=11; P>0.05). Thus, eclosion success, also, reflected primarily
the proximal effects of density and only to a lesser extent, if at all, the longer-term
evolution along a geographical gradient of climate and density.

Phenotypic variation of demographic traits in response to variable resources
vastly exceeds differences due to locality or zone of origin (Figs. 3.7 and 3.8).
Decreased resources result in a linear decline of capacity for increase but the
reason for this decline varies with resource level. At modest resource limitations,
generation time increases but replacement rate remains much the same. At more
severe levels of resource limitation, generation time remains relatively stable,
while replacement rate continues to decline. Moeur and Istock (1980) also found
that moderately reduced resources in W. smithii resulted in the prolongation of
pre-adult development, especially in the fourth instar, with no resultant decline in
pupal size or adult fecundity. At more severe resource reductions (Fig. 3.7),
prolongation of development appears to reach a higher asymptote, whereafter
net fecundity is reduced. These observations suggest that there are physiological
trade-offs between development time and fecundity in W. smithii but that the
specific trade-off is density dependent.

The low residual variations in demographic traits (Figs. 3.7 and 3.8) show that
homeostatic adjustment greatly exceeds genetic differences in response to
density. Slobodkin (1968) has proposed that the optimal strategy for organisms
evolving in a heterogeneous environment is to “behave in a homeostatic fashion
50 as to avoid or counteract the effects of introduced (environmental) variation”.
On the other hand, homeostatic ability is advantageous over a genetically fixed
phenotype only when homeostatic adjustment can take place within the magni-
tude and time constraints of environmental variation (Bradshaw 1976, 1986b). In
the case of mosquitoes, adult size and, consequently, ovariole number and blood-
meal capacity, are fixed by the time of pupation (Hawley 1985). The prolongation
of larval development and the determination of potential adult fecundity are all
developmental alternatives available to larvae within the time frame of reduced
resources. Consequently, most of the phenotypic variation in demographic
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traits of W. smithii encountering variable density in the laboratory reflects
individual homeostasis rather than genetic divergence among populations.

Locality Effects

The above results indicate that ., its components and its subcomponents are all
refractory to the broader gradient of climate and density-dependent selection
experienced by W. smithii throughout its range. These results are based on
phenotypic differences observed among six geographical zones. The lack of
among-zone variation may be due to an impotence of climate- and density-
dependent selection to mediate the evolution of demographic traits or to a lack of
heritable variation in the traits themselves. However, if there is significant
variation among localities regardless of zone, then heritable variation for those
traits must exist and phenotypic evolution must have taken place.

To examine differences among localities requires an estimate of within-locality
variation. Consequently, we made a second, independent determination of r., its
components, and its subcomponents in nine populations of W. smithii (two
locations each from 30-31°N, 900 m at 36° N, 40° N and 42.5° N and one locality at
49° N) at two densities (10 and 40 per leaf).

This procedure provided replicated norms of reaction across two densities (Fig.
3.9) for capacity for increase, its components, and its subcomponents. Two-way
ANOVA then revealed significant locality and/or locality X density effects for
capacity for increase, replacement rate, mean generation time, eclosion success
and development time. Eggs per ecdysed female, previously found to vary among
zones (Fig. 3.8) did not vary significantly among localities (Fig. 3.9), probably
because of the lower discriminating power of the latter ANOVA. Sex ratio,
although reflecting effects of density did not vary among zones or localities or
exhibit zone or localityxdensity interaction. Maturation time did not reflect
effects of zone, locality, density, or their interaction, in agreement with Moeur
and Istock (1980), who likewise found no variation within populations for this
trait. Taken together, the results in Figs. 3.7-3.9 indicate that evolutionary
divergence has taken place in all the above traits except sex ratio and maturation
time. Thus, the lack of among-zone variation in r,, in its components, and in all
but two of its subcomponents does not represent a lack of genetic variability
underlying the traits but rather a lack of climate or density-dependent develop-
ment, per se, to select for their evolutionary divergence.

Genetic Divergence

The degree of genetic divergence between two populations may be reflected by
the degree of heterosis observed in their hybrids (Endler 1977; Falconer 1981;
Dingle et al. 1982).

To examine possible heterotic effects, we performed 13 crosses among the 12
populations of W. smithii contributing to Figs. 3.7-3.9. These 13 crosses
represented parent populations with median and extreme phenotypes and
geographical displacements (Bradshaw and Holzapfel 1989). We considered
heterosis to occur if the difference between hybrid and mid-parent phenotypes
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Fig. 3.9. Effect of density on capacity for increase, its components, and its subcomponents for each of
nine localities of origin regardless of zone. Trait abbreviations are as in Fig. 3.7 except: %
Ecl=arcsine transformed percentage eclosion; In Fec=In (eggs/female). Each point represents the
mean of two independent determinations in the laboratory for each population from a given locality.
Within each graph is provided the percentage reduction in total sum of squares from 2-way ANOVA
with treatments locality of origin (L), density in the laboratory (D), and their interaction (X).
Significance of each treatment is given by *P<0.05, **P<0.01, ***P<0.001; otherwise, not
significant. A significant effect of locality indicates a significant difference among localities in the trait
indicated; a significant effect of X indicates that localities differ in response to density by the trait
indicated.

was in the direction of increased fitness (increased r.) and tested for significant
differences between hybrid and mid-parent values by one-way ANOVA.

Fig. 3.10 shows that capacity for increase, its components, and two of its
subcomponents (sex ratio and development time) all exhibited significant
heterosis but maturation time, fecundity and pupation success did not. The data
in Fig. 3.9 provide evidence that all the demographic traits except sex ratio and
maturation time have diverged both genetically and phenotypically among
populations of W. smithii. The data in Fig. 3.10 show that sex ratio has diverged
genetically even though this divergence has not resulted in significant phenotypic
differences among populations (Fig. 3.9). Conversely, fecundity that varied
significantly among populations (Fig. 3.9) did not produce significant heterosis in
hybrid populations (Fig. 3.10). Consistently, maturation time did not differ
among populations (Fig.3.9) and did not produce significant heterosis in hybrid
populations (Fig. 3.10). The demographic traits in W. smithii thus illustrate that
within the geographical divergence of a single species, substantial phenotypic
divergence can occur through substantial, or minimal, non-detectable genetic
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Fig. 3.10. Heterosis of demographic traits observed among hybrids between parent populations of W.
smithii representing median and extreme phenotypic divergence of traits and of geographical
separation. At the top of the figure, F; 54 is the F-value from one-way ANOVA between hybrid and
mid-parent phenotypes for each trait. Trait abbreviations as in Fig. 3.9. Note that heterosis is
indicated for a significantly lower hybrid than mid-parent value for T, DT and MT. ™not significant;
**P<0.01; ***P<0.001.

divergence; and significant genetic divergence can occur with minimal, non-
detectable phenotypic divergence.

Covariation of Traits

The above results still leave open the question as to whether geographical
variation in capacity for increase is composed of covarying or independently
varying components and subcomponents. The independence of demographic
traits from broader geographical influence means that evolutionary trade-offs
among the traits themselves should be apparent once the proximal effects of
density have been factored out. Since density in the laboratory does have such a
dramatic influence on demographic traits (Figs. 3.7-3.9), there is no optimal
density at which to look for these trade-offs. Consequently, we examined
covariation among r., its components, and its subcomponents at each locality by
factoring out density effects and then determined correlations between traits
among localities. We corrected for the species-wide effects of density by: (a)
finding the mean value of each trait at each density across localities; (b) regressing
this mean value on density or, in the case of percentage eclosion, on density and
In (density) to account for the curvilinear response of this trait to density; and (c)
calculating the mean deviation from regression across densities for each trait at
each locality. Thus, the mean trait at each locality was based on four observations
(deviations from regression on density). To look at correlated divergences of
traits among localities, we made pair-wise correlations (n=12 each) between
mean deviation from regression of ., its components, and its subcomponents.
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With a sample size of 12, the least significant correlation is =0.57 (r*=0.32) but
the averaging of four independent deviations from regression should reduce
sampling variance.

Capacity for increase among localities (Fig. 3.11) was very highly correlated
with replacement rate among localities but not mean generation time among
localities. Further, replacement rate and mean generation time were not
themselves correlated and the non-significant correlation was negative. It would
thus appear, firstly, that divergence of capacity for increase is due mainly to
divergence of replacement rate and not mean generation time. Secondly, there
have been no adaptive (genetic) trade-offs between replacement rate and
generation time. That is, among localities, an evolved increase in replacement
rate has resulted in a concomitant increase in capacity for increase without a
compensatory increase in mean generation time. Although all three traits exhibit
evolutionary divergence among localities (Fig. 3.9), only replacement rate
covaries with capacity for increase and both vary independently of mean
generation time. Among the components of replacement rate, only percentage
eclosion and fecundity vary among localities while sex ratio does not (Fig. 3.9)
and only fecundity covaries with replacement rate (Fig. 3.11). Among the
components of mean generation time, development time varies among localities,

Fig. 3.11. Correlation between r, and its components, between the components and each of their
respective subcomponents, and among all the subcomponents from mean values (n=4) of each trait at
each of 12 localities. Means represent residuals from regression of each trait on density in the
laboratory. Continuous lines indicate positive correlations; broken lines indicate negative cor-
relations; heavy lines indicate significant correlations (P<0.05). The correlation coefficient (r) is given
on each line. Note that with a sample size of 12, the least significant r=0.57. Abbreviations as for Figs.
3.7 and 3.9.
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vary independently of each other and may covary with, or be independent of,
components of fitness that in turn may covary with, or be independent of, the
composite index of fitness. It is therefore very dangerous to extrapolate to fitness
from any of its components or correlates without determining actual connection
(Livdahl and Sugihara 1984; Hard et al. 1989). The lack of more significant
covariation among demographic fitness traits (Fig. 3.11) implies that adaptive
trade-offs have not been an important component in the evolutionary divergence
of W. smithii populations, regardless of the underlying genetic correlations within
populations. Specialized adaptations such as facultative iteroparity (Bradshaw,
1986a) or high intraspecific competitive ability (Bradshaw and Holzapfel, 1989)
may then evolve and dramatically affect realized fitness in a given local habitat
without adversely affecting potential fitness over a broad range of habitats.
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